Gradual trust and distrust in recommender systems
نویسندگان
چکیده
Trust networks among users of a recommender system (RS) prove beneficial to the quality and amount of the recommendations. Since trust is often a gradual phenomenon, fuzzy relations are the pre-eminent tools for modeling such networks. However, as current trust-enhanced RSs do not work with the notion of distrust, they cannot differentiate unknown users from malicious users, nor represent inconsistency. These are serious drawbacks in large networks where many users are unknown to each other and might provide contradictory information. In this paper, we advocate the use of a trust model in which trust scores are (trust,distrust)-couples, drawn from a bilattice that preserves valuable trust provenance information including gradual trust, distrust, ignorance, and inconsistency. We pay particular attention to deriving trust information through a trusted third party, which becomes especially challenging when also distrust is involved.
منابع مشابه
Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملApplication of Trust and Distrust in Recommender System: A Study
Recommender systems help customers to choose right product or service from large number of alternatives available on Internet. In recent time, trust becomes an important issue in designing effective recommender systems. In this paper we have studied the role of trust and distrust in designing recommender systems. General Terms E-Commerce, Information Retrieval, Web Mining.
متن کاملMulti-faceted trust and distrust prediction for recommender systems
Many trust-aware recommender systems have explored the value of explicit trust, which is specified by users with binary values and simply treated as a concept with a single aspect. However, in social science, trust is known as a complex term with multiple facets, which have not been well exploited in prior recommender systems. In this paper, we attempt to address this issue by proposing a (dis)...
متن کاملA Regularization Method with Inference of Trust and Distrust in Recommender Systems
In this study we investigate the recommendation problem with trust and distrust relationships to overcome the sparsity of users’ preferences, accounting for the fact that users trust the recommendations of their friends, and they do not accept the recommendations of their foes. In addition, not only users’ preferences are sparse, but also users’ social relationships. So, we first propose an inf...
متن کاملMatrix Factorization with Explicit Trust and Distrust Relationships
With the advent of online social networks, recommender systems have became crucial for the success of many online applications/services due to their significance role in tailoring these applications to user-specific needs or preferences. Despite their increasing popularity, in general recommender systems suffer from the data sparsity and the cold-start problems. To alleviate these issues, in re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 160 شماره
صفحات -
تاریخ انتشار 2009